

Table Of Contents

1 Executive Summary

2 Audit Methodology

3 Project Overview

3.1 Project Introduction

3.2 Coverage

3.3 Vulnerability Information

4 Findings

4.1 Visibility Description

4.2 Vulnerability Summary

5 Audit Result

6 Statement

1 Executive Summary

On 2023.10.23, the SlowMist security team received the team's security audit application for Stability pallets,

developed the audit plan according to the agreement of both parties and the characteristics of the project, and finally

issued the security audit report.

The SlowMist security team adopts the strategy of "white box" to conduct a complete security test on the project in

the way closest to the real attack.

The test method information:

Test method Description

Black box testing Conduct security tests from an attacker's perspective externally.

Grey box testing
Conduct security testing on code modules through the scripting tool, observing the
internal running status, mining weaknesses.

White box
testing

Based on the open source code, non-open source code, to detect whether there are
vulnerabilities in programs such as nodes, SDK, etc.

The vulnerability severity level information:

Level Description

Critical
Critical severity vulnerabilities will have a significant impact on the security of the DeFi
project, and it is strongly recommended to fix the critical vulnerabilities.

High
High severity vulnerabilities will affect the normal operation of the DeFi project. It is
strongly recommended to fix high-risk vulnerabilities.

Medium
Medium severity vulnerability will affect the operation of the DeFi project. It is
recommended to fix medium-risk vulnerabilities.

Low
Low severity vulnerabilities may affect the operation of the DeFi project in certain
scenarios. It is suggested that the project party should evaluate and consider whether
these vulnerabilities need to be fixed.

Weakness There are safety risks theoretically, but it is extremely difficult to reproduce in engineering.

Suggestion There are better practices for coding or architecture.

In black box testing and gray box testing, we use methods such as fuzz testing and script testing to test the

robustness of the interface or the stability of the components by feeding random data or constructing data with a

specific structure, and to mine some boundaries Abnormal performance of the system under conditions such as

bugs or abnormal performance. In white box testing, we use methods such as code review, combined with the

relevant experience accumulated by the security team on known blockchain security vulnerabilities, to analyze the

object definition and logic implementation of the code to ensure that the code has the key components of the key

logic. Realize no known vulnerabilities; at the same time, enter the vulnerability mining mode for new scenarios and

new technologies, and find possible 0day errors.

2 Audit Methodology

The security audit process of SlowMist security team for smart contract includes two steps:

Smart contract codes are scanned/tested for commonly known and more specific vulnerabilities using automated

analysis tools.

Manual audit of the codes for security issues. The contracts are manually analyzed to look for any potential

problems.

Following is the list of commonly known vulnerabilities that was considered during the audit of the smart contract:

NO. Audit Items Result

1 Replay Vulnerability Passed

2 Reordering Vulnerability Passed

3 Race Conditions Vulnerability Passed

4 Authority Control Vulnerability Audit Some Risks

5 Block data Dependence Vulnerability Passed

6 Explicit Visibility of Functions Audit Passed

7 Arithmetic Accuracy Deviation Vulnerability Some Risks

8 Malicious Event Log Audit Passed

NO. Audit Items Result

9 Others Some Risks

10 SAST Passed

11 State Consistency Audit Passed

12 Failure Rollback Audit Passed

13 Unit Test Audit Passed

14 Integer Overflow Audit Some Risks

15 Parameter Verification Audit Some Risks

16 Error Unhandle Audit Some Risks

17 Boundary Check Audit Passed

18 Weights Audit Some Risks

19 Macros Audit Passed

20 Non-standard token security audit Passed

21 Prevent misuse audit Passed

3 Project Overview

3.1 Project Introduction

Implementation of Stability blockchain in Substrate + Rust, a scalability solution for accessing the gas market.

3.2 Coverage

Target Code and Revision:

https://github.com/stabilityprotocol/stability

commit: 82f052a8f25774ee5dc337a8cdafad1d0064b1b8

Audit modules:

pallets/custom-balances/src/lib.rs

pallets/dnt-fee-controller/src/lib.rs

pallets/erc20-manager/src/lib.rs

pallets/fee-rewards-vault/src/lib.rs

pallets/root-controller/src/lib.rs

pallets/sponsored-transactions/src/lib.rs

pallets/token-fee-controller/upported-tokens-manager/src/lib.rs

pallets/token-fee-controller/user-fee-selector/src/lib.rs

pallets/token-fee-controller/validator-fee-selector/src/lib.rs

pallets/upgrade-runtime-proposal/src/lib.rs

pallets/validator-keys-controller/src/lib.rs

pallets/validator-set/src/lib.rs

pallets/zero-gas-transactions/src/lib.rs

3.3 Vulnerability Information

The following is the status of the vulnerabilities found in this audit:

NO Title Category Level Status

N1
The potential loss of
precision or accuracy

Arithmetic Accuracy
Deviation

Vulnerability
High Fixed

N2
Overflow/underflow

risks
Integer Overflow

Audit
High Fixed

N3
Program panic due to

division 0
Error Unhandle

Audit
High Fixed

N4
Amount should be
greater than zero

Parameter
Verification Audit

Suggestion Fixed

N5
Unreasonable pallet

weight
Weights Audit Low Fixed

N6
balance precision
loss due to covert

U256 to u128

Arithmetic Accuracy
Deviation

Vulnerability
Low Acknowledged

N7
Unimplemented
function logic

Others Suggestion Acknowledged

N8 Node crash due to Error Unhandle High Fixed

NO Title Category Level Status

using panic!() Audit

N9
Avoid hardcoding
values in the code

Others Suggestion Fixed

N10
Uncorrect approach
to handle an error

Error Unhandle
Audit

Low Ignored

N11
Unreasonable

permission
Authority Control
Vulnerability Audit

Low Ignored

4 Findings

4.1 Visibility Description

The SlowMist Security team analyzed the visibility of major contracts during the audit, the result as follows:

root-controller

Function Name Parameters verification coverage weight sender

dispatch_as_root 2/2 0 ensure_origin

sponsored-transactions

Function Name Parameters verification coverage weight sender

send_sponsored_transaction 3/4 gas_to_weight x

upgrade-runtime-proposal

Function Name Parameters verification coverage weight sender

propose_code 2/2 0 ensure_origin

set_block_application 2/2 0 ensure_root

reject_proposed_code 1/1 0 ensure_root

validator-keys-controller

Function Name Parameters verification coverage weight sender

publish_keys 2/3 0 ensure_none

validator-set

Function Name Parameters verification coverage weight sender

add_validator 2/2 0 ensure_origin

remove_validator 2/2 0 ensure_origin

update_max_missed_epochs 2/2 0 ensure_origin

add_validator_again 2/3 0 ensure_none

zero-gas-transactions

Function Name Parameters verification coverage weight sender

send_zero_gas_transaction 2/3 gas_to_weight x

4.2 Vulnerability Summary

[N1] [High] The potential loss of precision or accuracy

Category: Arithmetic Accuracy Deviation Vulnerability

Content

The use of saturating_add , saturating_mul , and saturating_sub in Rust is generally intended to prevent

integer overflow and underflow, ensuring that the result remains within the valid range for the data type. However, in

certain cases, relying on these functions alone can lead to inaccurate or unexpected results. This occurs when the

application logic assumes that saturation alone guarantees accurate results, but ignores the potential loss of

precision or accuracy.

Example:

Consider a scenario where you are calculating the total balance of accounts in a financial application. You use

saturating_add to add balances together to prevent overflow. However, saturating_add doesn't alert you to

the potential loss of precision when the sum exceeds the valid range for the data type. If this application deals with

very large values, you might end up with a result that is significantly less than the true sum.

Code location:

- pallets/dnt-fee-controller/src/lib.rs

 L108: .saturating_mul(conversion_rate.0)

 L126: let over_fee = paid_amount.saturating_sub(actual_amount);

 L128: .saturating_mul(conversion_rate.0)

 L148: .saturating_mul(conversion_rate.0)

 L158: .saturating_mul(validator_share.into())

- pallets/sponsored-transactions/src/lib.rs

 L145: gas_limit.saturating_mul(gas_price.into()),

 L156: let gas_left = gas_limit.saturating_sub(gas_used.into());

 L163: gas_left.saturating_mul(gas_price.into()),

 L285: let actual_weight = weight.saturating_add(

 L311: .saturating_mul(conversion_rate.0)

- pallets/sponsored-transactions/src/tests.rs

 L191: total_deposited = amount.saturating_add(total_deposited);

 L193: total_withdrawn = amount.saturating_add(total_withdrawn);

- pallets/validator-set/src/lib.rs

 L471: validators.len().saturating_sub(1) as u32 >= T::MinAuthorities::get(),

- pallets/zero-gas-transactions/src/lib.rs

 L144: let actual_weight = weight.saturating_add(

- pallets/zero-gas-transactions/src/tests.rs

 L191: total_deposited = amount.saturating_add(total_deposited);

 L193: total_withdrawn = amount.saturating_add(total_withdrawn);

Solution

Whenever performing arithmetic operations on numeric variables, use the checked arithmetic functions provided by

Rust's standard library, such as checked_add , checked_mul , and checked_sub . These functions return None

in case of overflow, allowing you to handle the situation gracefully.

Status

Fixed

[N2] [High] Overflow/underflow risks

Category: Integer Overflow Audit

Content

In Rust, numeric variables used in calculations without proper overflow checks, such as checked_add ,

checked_mul , or checked_sub , may be susceptible to integer overflow. Integer overflow occurs when the result

of an arithmetic operation exceeds the maximum value that the data type can represent, leading to an unexpected

and potentially unsafe outcome.

Code location:

- pallets/custom-balances/src/lib.rs

 L89: let second = self.0 - first;

 L94: Self::new(self.0 + other.0)

 L98: self.0 += other.0;

- pallets/validator-set/src/lib.rs

 L571: let session_end_block = T::SessionBlockManager::session_start_block(end_index

+ 1);

- pallets/custom-balances/src/lib.rs

 L89: let second = self.0 - first;

- pallets/dnt-fee-controller/src/lib.rs

 L161: let dapp_fee = fee_in_user_token - validator_fee;

- pallets/sponsored-transactions/src/lib.rs

 L83: gas_price * transaction_data.gas_limit,

 L

- pallets/custom-balances/src/lib.rs

 L98: self.0 += other.0;

- pallets/sponsored-transactions/src/lib.rs

 L120: SponsorNonce::<T>::mutate(meta_trx_sponsor.clone(), |nonce| *nonce += 1);

- pallets/validator-set/src/lib.rs

 L582: i += 1u32.into();

Solution

Whenever performing arithmetic operations on numeric variables, use the checked arithmetic functions provided by

Rust's standard library, such as checked_add , checked_mul , and checked_sub . These functions return None

in case of overflow, allowing you to handle the situation gracefully.

Status

Fixed

[N3] [High] Program panic due to division 0

Category: Error Unhandle Audit

Content

If the value of conversion_rate.1 is 0, it may lead to a program panic. This is because in Rust, when performing

integer division, dividing by 0 will result in a panic. Such a situation is considered undefined behavior, and Rust

detects division by 0 at runtime and panics to ensure program safety.

- pallets/dnt-fee-controller/src/lib.rs

 L109: .div_mod(conversion_rate.1)

 L129: .div_mod(conversion_rate.1)

 L149: .div_mod(conversion_rate.1)

- pallets/sponsored-transactions/src/lib.rs

 L312: .div_mod(conversion_rate.1)

Solution

if conversion_rate.1 == U256::zero() {

 return Err(());

}

Status

Fixed

[N4] [Suggestion] Amount should be greater than zero

Category: Parameter Verification Audit

Content

Amount should be greater than zero, a parameter of zero is waste of gas.

fn withdraw_fee(

 from: H160,

pallets/dnt-fee-controller/src/lib.rs

 token: H160,

 conversion_rate: (U256, U256),

 amount: U256, //SlowMist//

)

fn correct_fee(

 from: H160,

 token: H160,

 conversion_rate: (U256, U256),

 paid_amount: U256, //SlowMist//

 actual_amount: U256, //SlowMist//

)

fn pay_fees(

 token: H160,

 conversion_rate: (U256, U256),

 actual_amount: U256, //SlowMist//

 validator: H160,

 to: Option<H160>,

)

pub fn add_claimable_reward(address: H160, token: H160, amount: U256) -> Result<(),

&'static str>

pub fn sub_claimable_reward(address: H160, token: H160, amount: U256)-> Result<(),

&'static str>

fn ensure_sponsor_balance(sponsor: H160, token: H160, amount: U256) -> Result<(), ()>

fn transfer_fee_token(

 token: &H160,

 conversion_rate: (U256, U256),

 payer: &H160,

 payee: &H160,

 amount: U256, //SlowMist//

) -> Result<(), ()>

Solution

Check amount.is_zero()

Status

Fixed

[N5] [Low] Unreasonable pallet weight

pallets/fee-rewards-vault/src/lib.rs

pallets/token-fee-controller/supported-tokens-manager/src/lib.rs

Category: Weights Audit

Content

If too many operations have their Weight set to 0, it may lead to an unreasonable resource allocation, as

blockchains require some basic computation and validation to maintain security.

#[pallet::call_index(0)]

#[pallet::weight(0)]

pub fn dispatch_as_root

#[pallet::call_index(0)]

#[pallet::weight(0)]

pub fn propose_code(origin: OriginFor<T>, code: Vec<u8>) -> DispatchResultWithPostInfo

#[pallet::call_index(1)]

#[pallet::weight(0)]

pub fn set_block_application

#[pallet::call_index(2)]

#[pallet::weight(0)]

pub fn reject_proposed_code(origin: OriginFor<T>) -> DispatchResultWithPostInfo

#[pallet::call_index(0)]

#[pallet::weight(0)]

pub fn publish_keys(

 origin: OriginFor<T>,

 keys: PublishingKeys<T::AuthorityId, T::FinalizationId, T::BlockNumber>,

 _signature: <T::AuthorityId as RuntimeAppPublic>::Signature, //@audit

) -> DispatchResult

#[pallet::call_index(0)]

#[pallet::weight(0)]

pub fn add_validator(origin: OriginFor<T>, validator_id: T::AccountId) ->

DispatchResult

pallets/root-controller/src/lib.rs

pallets/upgrade-runtime-proposal/src/lib.rs

pallets/validator-keys-controller/src/lib.rs

pallets/validator-set/src/lib.rs

#[pallet::call_index(1)]

#[pallet::weight(0)]

pub fn remove_validator(

 origin: OriginFor<T>,

 validator_id: T::AccountId,

) -> DispatchResult

#[pallet::call_index(2)]

#[pallet::weight(0)]

pub fn update_max_missed_epochs(

 origin: OriginFor<T>,

 max_missed_epochs: U256,

) -> DispatchResult

#[pallet::call_index(3)]

#[pallet::weight(0)]

pub fn add_validator_again(

 origin: OriginFor<T>,

 heartbeat: Heartbeat<T::BlockNumber, T::AuthorityId>,

 _signature: <T::AuthorityId as RuntimeAppPublic>::Signature,

) -> DispatchResult

fn on_initialize(n: T::BlockNumber) -> Weight

Solution

The formula for calculating the final fee looks like this:

inclusion_fee = base_fee + length_fee + [targeted_fee_adjustment * weight_fee];

final_fee = inclusion_fee + tip;

All dispatchable functions in Substrate must specify a weight. The way of doing that is using the annotation-based

system that lets you combine fixed values for database read/write weight and/or fixed values based on benchmarks.

Status

Fixed

[N6] [Low] balance precision loss due to covert U256 to u128

pallets/upgrade-runtime-proposal/src/lib.rs

Category: Arithmetic Accuracy Deviation Vulnerability

Content

if actual_balance large than u128::MAX , total_balance function will return u128::MAX , it is an incorrect

value.

fn total_balance(who: &T::AccountId) -> Self::Balance {

 let evm_address = T::AccountIdMapping::into_evm_address(who);

 let actual_balance =

 <T::UserFeeTokenController as

UserFeeTokenController>::balance_of(evm_address);

 let maximum_balance = sp_core::U256::from(u128::MAX);

 if maximum_balance < actual_balance {

 u128::MAX //SlowMist//

 } else {

 actual_balance.as_u128()

 }

}

Solution

Throw an error if the actual_balance is overflow.

Status

Acknowledged; This is a known limitation. Since we have to maintain the Substrate's balance interfaces because

they are required by pallet_evm::Config, this interfaces are restricted to u128 type instead of the U256 type of

ERC20's balance.

No big consequences can derive from this limitation. This limitation will only make fail transactions in pallet_ethereum

predispatch checks but we have implemented some fallback checks that will check actual balance (U256-typed) and

the transaction would go through then.

[N7] [Suggestion] Unimplemented function logic

Category: Others

Content

pallets/custom-balances/src/lib.rs

The following functions do not have a full implementation of the logical content, just return default value or do few

things.

can_slash

total_issuance

minimum_balance

burn

issue

transfer

slash

deposit_into_existing

resolve_into_existing

deposit_creating

resolve_creating

withdraw

settle

can_deposit

Solution

Check for correct function implementation.

Status

Acknowledged; This trait has been mocked because we don't use any native token logic driven by this interface.

[N8] [High] Node crash due to using panic!()

Category: Error Unhandle Audit

Content

If EVM calls make_free_balance_be , the node crashes.

fn make_free_balance_be(

 _who: &T::AccountId,

 _balance: Self::Balance,

) -> SignedImbalance<Self::Balance, Self::PositiveImbalance> {

 panic!("make_free_balance_be is not allowed in this pallet")

}

Solution

return Err instead of using panic!

pallets/custom-balances/src/lib.rs

Status

Fixed

[N9] [Suggestion] Avoid hardcoding values in the code

Category: Others

Content

In the provided code, hardcoding an Ethereum address (an H160 value) directly within the default method is not

considered a good practice. This approach lack of flexibility and reduced maintainability.

fn default() -> Self {

 Self {

 initial_default_conversion_rate_controller: <H160 as

core::str::FromStr>::from_str(

 "0x444212d6E4827893A70d19921E383130281Cda4a",

)

 .expect("invalid address"),

 }

}

Solution

Consider the following approaches:

[N10] [Low] Uncorrect approach to handle an error

Category: Error Unhandle Audit

Content

pallets/token-fee-controller/validator-fee-selector/src/lib.rs

Configuration Files.

Environment Variables.

Constants or Constants Modules

Parameterization.

Status

Fixed

conversion_rate return a default value of (U256::from(1), U256::from(1)) when

T::SimulatorRunner::call failed, it is not a correct value and may cause mistake.

fn conversion_rate(sender: H160, validator: H160, token: H160) -> (U256, U256) {

 let conversion_rate_controller = Self::conversion_rate_controller(validator);

 let args: sp_std::vec::Vec<H256> =

 sp_std::vec![sender.into(), validator.into(), token.into()];

 T::SimulatorRunner::call(

 H160::from_low_u64_be(0),

 conversion_rate_controller,

 stbl_tools::eth::generate_calldata(

 "getConversionRate(address,address,address)",

 &args,

),

 0.into(),

 3_000_000,

 None,

 None,

 None,

 Default::default(),

 false,

 false,

 &pallet_evm::EvmConfig::london(),

)

 .map(|execution_info| {

 (

 U256::from_big_endian(execution_info.value[0..32].as_ref()),

 U256::from_big_endian(execution_info.value[32..64].as_ref()),

)

 })

 .unwrap_or((U256::from(1), U256::from(1))) //SlowMist//

}

Solution

Throw an error if possible.

Status

Ignored; The rationale behind having a default conversion rate is to not block user's transactions in the case of a bad

pallets/token-fee-controller/validator-fee-selector/src/lib.rs

validator's setup. The selected default conversion rate is arbitrary and may be needed to change it to (0, 1). In the

case, the validator misses to configure right the conversion rate manager won't receive any fees.

[N11] [Low] Unreasonable permission

Category: Authority Control Vulnerability Audit

Content

ensure_none(origin) . It is signed by nobody, can be either: included and agreed upon by the validators anyway,

or unsigned transaction validated by a pallet.

It is signed by some public key and we provide the AccountId .

pub fn publish_keys(

 origin: OriginFor<T>,

 keys: PublishingKeys<T::AuthorityId, T::FinalizationId, T::BlockNumber>,

 _signature: <T::AuthorityId as RuntimeAppPublic>::Signature,

) -> DispatchResult {

 ensure_none(origin)?; //SlowMist//

 //...

pub fn add_validator_again(

 origin: OriginFor<T>,

 heartbeat: Heartbeat<T::BlockNumber, T::AuthorityId>,

 _signature: <T::AuthorityId as RuntimeAppPublic>::Signature,

) -> DispatchResult {

 ensure_none(origin)?; //SlowMist//

 //...

pub fn send_zero_gas_transaction(

 _origin: OriginFor<T>,

 transaction: Transaction,

 validator_signature: Vec<u8>,

) -> DispatchResultWithPostInfo {

 //...

 //SlowMist// Did not check the `_origin`

pallets/validator-keys-controller/src/lib.rs

pallets/validator-set/src/lib.rs

pallets/zero-gas-transactions/src/lib.rs

 //...

}

Solution

The use of ensure_none should be avoided to prevent functions from being called by evil.

Status

Ignored; This is not a vulnerability since there is a proper permission check managed through custom signatures

implementations.

5 Audit Result

Audit Number Audit Team Audit Date Audit Result

0X002310300001 SlowMist Security Team 2023.10.23 - 2023.10.30 Low Risk

Summary conclusion: The SlowMist security team use a manual and SlowMist team's analysis tool to audit the

project, during the audit work we found 4 high risk, 4 low risk, 3 suggestion vulnerabilities. And 2 low risk

vulnerabilities were ignored;

6 Statement

SlowMist issues this report with reference to the facts that have occurred or existed before the issuance of this

report, and only assumes corresponding responsibility based on these.

For the facts that occurred or existed after the issuance, SlowMist is not able to judge the security status of this

project, and is not responsible for them. The security audit analysis and other contents of this report are based on the

documents and materials provided to SlowMist by the information provider till the date of the insurance report

(referred to as "provided information"). SlowMist assumes: The information provided is not missing, tampered with,

deleted or concealed. If the information provided is missing, tampered with, deleted, concealed, or inconsistent with

the actual situation, the SlowMist shall not be liable for any loss or adverse effect resulting therefrom. SlowMist only

conducts the agreed security audit on the security situation of the project and issues this report. SlowMist is not

responsible for the background and other conditions of the project.

